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Wi Motivation

= Architectural models can be applied for design time
analysis and reconfigurations at runtime ...
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Wi Motivation
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Wi Problem Statement

= Analysis Toolchain Parallelism

= As a user, | would like to use different analysis
approaches in parallel.

= Analysis Toolchain Flexibility

= As a user, | prefer not to be forced to decide
about the toolchain in advance.

= Extraction Toolchain Reuse

= As a user, | would like to include performance
model extraction for newly emerging formalisms
e without bothering about extraction complexity.
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wo Two step model learning

Algorithm 2 Application of builder for Performance Model
Generation
1: function BUILDMODEL(systemModel, operationGraph,
resourceDemands, workload, builder)

- - 2: createHosts(systemModel, builder);
1 . Iearn I n g Of ge ne rl C aSpeCtS 3: createComponents(systemModel, builder);
4: createlnterfaces(systemModel, builder);
Algorithm 1 Model Extraction Using Generic Builder 2 ;I‘eateA{lOCE‘lt]O.nS(S}’.‘StE‘.th-I‘O'del‘ bvu:l‘lc‘ier);
: or all source : operationGraph.vertices do
1: function coONSTRUCT(Path path, Builder builder) 7 component ¢ source.component.name
2 logs < readLogFiles(path) 8: host < source.host.name
3: ?111?11_\-'2(“1' < compose flllfll}'b’iﬁ filters 9: assen]bly 4 component + host
4: analyzer.analyze(logs) 10: builder.add Assembly (assembly);
5 operationGraph + analyzer.getOperationGraph() 11: builder.assign(assembly, component);
G: rds « analyzer.getResourceDemands() 12: for all edge : source.outgoingbidges do
7 workload + analyzer.getWorkload() 13: target <— edge.getTargetVertice;
8: buildModel(operationGraph, rds, workload, buil- 14: tComponent 4 target.component.name
der); 15: tHost < target.host.name
9 builder.save() 16: tAssembly + tComponent + tHost
10: end function 17 builder.assign(tAssembly, tComponent);
18: builder.connect(assembly, tAssembly);
19: calls ¢~ outgoing.getExternalCalls();
20: end for
21: rd ¢ resourceDemands.get(signature)
22: builder.addBehavior(component, signature,

calls, host, rd);
23: end for
24: end function

2. model element
creation
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wu Approach

= Develop a framework that provides developers with a
solution that integrates established tooling for

monitoring, log processing, and resource demand
estimation.

= To leverage the framework for model construction
developers only have to implement a model builder
Interface that maps language independent concepts to
language specific representations.
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wo Learning of generic aspects

= PMX internaly uses a pipes and filter architecture

= PMX reuses existing libraries were possible

flelker LibreDE}

« Operation call graph * Resource demands
* Resource landscape

« Deployment

« Job arrival rates
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wu Approach

PerformanceModelExtractor F* Builder PalladioBuilder  f------=> PalladioModel
|

builder:Builder buildPart()

construct() Q\\\ % DMLBuilder |- 5> DMLModel

this.builder.buildPart(H creates

= Decouple learning and model creation using builder
pattern
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W Builder Interface

= The interface includes object creation routines ...

public EObject createHost(String hostName, int numberOfCores);

public EObject createComponent(String componentName);

public EObject createlnterface(String InterfaceName);

public EObject createMethod(String interfaceName, Signature signature);

public EObject createAssembly(String assemblyName, String componentName);
public EObject createAllocation(String assemblyName, String hostName);

public EObject createProvidedRole(String componentName, String interfaceName);
public EObject createRequiredRole(String componentName, String interfaceName);
public EObject createServiceBehavior(String componentName, String methodName,
List<ExternalCall> externalCalls, String processingResource, double meanResourceDemand);
public void createResourceDemand(String service);

public void createWorkload(HashMap<String, List<Double>> workload);
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Wi Builder Interface I

= ...and getter and connector functions

= Meta-model elements have cross references e.g., deployment
referes to infrastructure and component definitions

public EObject getRole(String role);

public EObject getAssembly(String assemblyName);

public EObject getMethod(String methodName);

public EObject getinterface(String interfaceName);

public EObject getServiceBehavior(String componentName,String methodName);

= Implementation of getters can be alleviated inheriting from a
provided AbstractBuilder class that stores created elements into
HashMaps
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wo Evaluation Setting

= Pet Clinic application

= Deployed on a 42 core VM

Web & Application Server
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. . CPU utilization (average sesslon response time In ms (average
Workload in requests per second ( ge) b ( ge)

Actual DML PCM  Kieker DML PCM

1(calibration) 0.33% 0.35% 0.34% 14.24 14.13 14.13
732 25.22% 24.64% 24.84% 14.35 14.14 14.54
940 33.12% 31.64% 31.77% 15.65 14.14  14.69

Table 2: Evaluation Results Pet Clinic Case Study.

Deviation for utilization is below 2% and
below 10% for response times.
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Wi Related Work

= Automated model extraction approaches
= Closed source: PMW, Epasa
= |imited to a single modeling language

= Subparts of model learning

= Extraction of resource demands, e.g., LibEeDE (Spinner2014,
Spinner2015)

= Flexibility
= Intermediate models (PMIF, Klapper, CSM,...)
= Generic meta-model (SAMM)
= |nterchange format (DUALLY)

Jurgen Walter 4/27/2017
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W Available online

= PMX core as well as builders are available online
http://descarte.tools/pmx/

. Chair of Computer Science Il I t+ P Site
UNIVERSITAT Software Engineering T oy
WURZBURG

« Fakultat far Mathematik und
Informatik

' D:esca rtes

mportant Links

« Lehrstuhl fir Informatik Il = = =

Self-Aware Computin

News
People r
Teoeral ' Performance Model eXtractor
Publications 4
The manual creation of architectural perfformance models is very complex, time intense and SPEC Research Grou
Projects 3 error prone. The Performance Model eXtractor (PMX) tool automates the extraction of
architectural performance models form measurement data. Currently, PMX supports logs of
Tools *  the (& Kieker Monitoring Framework as input data format. PMX separates the leaming of
generic aspects from model creation and is able to extract models of different formalisms.
DML * | Cumently there are builder implementations for (¥ Palladio Component Model and (£
- Descartes Modeling Language. More information can be found on the following pages:

LMBO N = Download (eclipse update site and standalone archive) s

= [ source code

e .
e u [ jenkins (currently only accessible within network of the university of wuerzburg) [ ICPE 2017. L'Aquila. Ital
LibReDE | u License K48 5
DaL 4 If you have any questions, please contact Jiirgen Walter.

Mailing List ;

Download
To stay updated on our tools, please subscribe to our descartes-tools mailing list {low ICAC 2017, Columbus. USA
Niceass traffic, only announcements related to our tools)
SPA
BUNGEE , | Your E-mail address: Subscribe

hinjector Your Name (optional):

SeAC @ ICAC 2017
QPME ¥ Columbus, USA

Jurgen Walter 4/27/2017


http://se.informatik.uni-wuerzburg.de/tools/pmx/

Wi Future Work

= Provide more builder implementations
= Conduct more case studies

= Allow for different monitoring tools and formats using
OPEN.xtrace (formerly Common Trace API (CTA)) as
iInput

= Use extracted models ...
= to integrate in load testing e.g., using a Jenkins plugin
= for runtime resource management
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Wi Conclusion

= We present a framework for the extraction of

architectural performance models generalizing over the
target modeling language.

= Using the presented approach, the user only has to
Implement our builder interface to create a performance
model generation tool for a specific modeling language.

.......
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