Julius-Maximilians-

UNIVERSITAT

WURZBURG

An Expandable Extraction
Framework for Architectural
Performance Models

Jurgen Walter*, Christian Stier**, Heiko Koziolek***, and
Samuel Kounev*

* University of Wirzburg E @ H
** FZ| Karlsruhe

*** ABB Corporate Research

April 27, 2017
QUDOS 2017 L’'Aquila, Italy

Wi Motivation

= Architectural models can be applied for design time
analysis and reconfigurations at runtime ...

75l
| g

Jurgen Walter 4/27/2017

—7

7

£

Performance Engineer \

Jurgen Walter

Manual creation

Huge effort per
application

Architectural

Performance
Model

4/27/2017

Wi Motivation

Automated
model learning

000:
Components, controlflow, resource 8{;;[1}8
Py demands, workload, ... g o
| AW

w—-/’i / =
1 -~ DML
Performance Engineer \ \

Huge effort

for each Architectural
formalism Performance

‘r 2 (i \ Model

4/27/2017

-,

Jurgen Walter

Wi Problem Statement

= Analysis Toolchain Parallelism

= As a user, | would like to use different analysis
approaches in parallel.

= Analysis Toolchain Flexibility

= As a user, | prefer not to be forced to decide
about the toolchain in advance.

= Extraction Toolchain Reuse

= As a user, | would like to include performance
model extraction for newly emerging formalisms
e without bothering about extraction complexity.

Performance Engineer

Jurgen Walter 4/27/2017

T
[

Performance Engineer

Jurgen Walter

Decouple learning of
generic aspects from
object creation routines

.....

Automated learning
of generic aspects

Architectural

Performance
Model

4/27/2017 6

wo Two step model learning

Algorithm 2 Application of builder for Performance Model
Generation
1: function BUILDMODEL(systemModel, operationGraph,
resourceDemands, workload, builder)

- - 2: createHosts(systemModel, builder);
1 . Iearn I n g Of ge ne rl C aSpeCtS 3: createComponents(systemModel, builder);
4: createlnterfaces(systemModel, builder);
Algorithm 1 Model Extraction Using Generic Builder 2 ;I‘eateA{lOCE‘lt]O.nS(S}’.‘StE‘.th-I‘O'del‘ bvu:l‘lc‘ier);
: or all source : operationGraph.vertices do
1: function coONSTRUCT(Path path, Builder builder) 7 component ¢ source.component.name
2 logs < readLogFiles(path) 8: host < source.host.name
3: ?111?11_\-'2(“1' < compose flllfll}'b’iﬁ filters 9: assen]bly 4 component + host
4: analyzer.analyze(logs) 10: builder.add Assembly (assembly);
5 operationGraph + analyzer.getOperationGraph() 11: builder.assign(assembly, component);
G: rds « analyzer.getResourceDemands() 12: for all edge : source.outgoingbidges do
7 workload + analyzer.getWorkload() 13: target <— edge.getTargetVertice;
8: buildModel(operationGraph, rds, workload, buil- 14: tComponent 4 target.component.name
der); 15: tHost < target.host.name
9 builder.save() 16: tAssembly + tComponent + tHost
10: end function 17 builder.assign(tAssembly, tComponent);
18: builder.connect(assembly, tAssembly);
19: calls ¢~ outgoing.getExternalCalls();
20: end for
21: rd ¢ resourceDemands.get(signature)
22: builder.addBehavior(component, signature,

calls, host, rd);
23: end for
24: end function

2. model element
creation

Jurgen Walter 4/27/2017 7

wu Approach

= Develop a framework that provides developers with a
solution that integrates established tooling for

monitoring, log processing, and resource demand
estimation.

= To leverage the framework for model construction
developers only have to implement a model builder
Interface that maps language independent concepts to
language specific representations.

Jurgen Walter 4/27/2017

wo Learning of generic aspects

= PMX internaly uses a pipes and filter architecture

= PMX reuses existing libraries were possible

flelker LibreDE}

« Operation call graph * Resource demands
* Resource landscape

« Deployment

« Job arrival rates

Jurgen Walter 4/27/2017

wu Approach

PerformanceModelExtractor F* Builder PalladioBuilder f------=> PalladioModel
|

builder:Builder buildPart()

construct() Q\\\ % DMLBuilder |- 5> DMLModel

this.builder.buildPart(H creates

= Decouple learning and model creation using builder
pattern

Jurgen Walter 4/27/2017

10

W Builder Interface

= The interface includes object creation routines ...

public EObject createHost(String hostName, int numberOfCores);

public EObject createComponent(String componentName);

public EObject createlnterface(String InterfaceName);

public EObject createMethod(String interfaceName, Signature signature);

public EObject createAssembly(String assemblyName, String componentName);
public EObject createAllocation(String assemblyName, String hostName);

public EObject createProvidedRole(String componentName, String interfaceName);
public EObject createRequiredRole(String componentName, String interfaceName);
public EObject createServiceBehavior(String componentName, String methodName,
List<ExternalCall> externalCalls, String processingResource, double meanResourceDemand);
public void createResourceDemand(String service);

public void createWorkload(HashMap<String, List<Double>> workload);

Jurgen Walter 4/27/2017 11

Wi Builder Interface I

= ...and getter and connector functions

= Meta-model elements have cross references e.g., deployment
referes to infrastructure and component definitions

public EObject getRole(String role);

public EObject getAssembly(String assemblyName);

public EObject getMethod(String methodName);

public EObject getinterface(String interfaceName);

public EObject getServiceBehavior(String componentName,String methodName);

= Implementation of getters can be alleviated inheriting from a
provided AbstractBuilder class that stores created elements into
HashMaps

Jurgen Walter 4/27/2017 12

wo Evaluation Setting

= Pet Clinic application

= Deployed on a 42 core VM

Web & Application Server

WelcomeController C Welcome
% HTTP E Controller

7%‘%@— VetControllerHTTP $j —CO— VetController %j —Cl

g(i OwnerController Owner
Vet HTTP cll C: Controller Al :

!

O— VetR i —

ClinicServicelmpl $j % et eposnory%j
Owner :

A\ Repository %j

Database $j

PetClinic-

7%49@7 CacheConfig E Application E
|

Admin

Jurgen Walter 4/27/2017

. . CPU utilization (average sesslon response time In ms (average
Workload in requests per second (ge) b (ge)

Actual DML PCM Kieker DML PCM

1(calibration) 0.33% 0.35% 0.34% 14.24 14.13 14.13
732 25.22% 24.64% 24.84% 14.35 14.14 14.54
940 33.12% 31.64% 31.77% 15.65 14.14 14.69

Table 2: Evaluation Results Pet Clinic Case Study.

Deviation for utilization is below 2% and
below 10% for response times.

Jurgen Walter 4/27/2017

14

Wi Related Work

= Automated model extraction approaches
= Closed source: PMW, Epasa
= |imited to a single modeling language

= Subparts of model learning

= Extraction of resource demands, e.g., LibEeDE (Spinner2014,
Spinner2015)

= Flexibility
= Intermediate models (PMIF, Klapper, CSM,...)
= Generic meta-model (SAMM)
= |nterchange format (DUALLY)

Jurgen Walter 4/27/2017

15

W Available online

= PMX core as well as builders are available online
http://descarte.tools/pmx/

. Chair of Computer Science Il I t+ P Site
UNIVERSITAT Software Engineering T oy
WURZBURG

« Fakultat far Mathematik und
Informatik

' D:esca rtes

mportant Links

« Lehrstuhl fir Informatik Il = = =

Self-Aware Computin

News
People r
Teoeral ' Performance Model eXtractor
Publications 4
The manual creation of architectural perfformance models is very complex, time intense and SPEC Research Grou
Projects 3 error prone. The Performance Model eXtractor (PMX) tool automates the extraction of
architectural performance models form measurement data. Currently, PMX supports logs of
Tools * the (& Kieker Monitoring Framework as input data format. PMX separates the leaming of
generic aspects from model creation and is able to extract models of different formalisms.
DML * | Cumently there are builder implementations for (¥ Palladio Component Model and (£
- Descartes Modeling Language. More information can be found on the following pages:

LMBO N = Download (eclipse update site and standalone archive) s

= [source code

e .
e u [jenkins (currently only accessible within network of the university of wuerzburg) [ICPE 2017. L'Aquila. Ital
LibReDE | u License K48 5
DaL 4 If you have any questions, please contact Jiirgen Walter.

Mailing List ;

Download
To stay updated on our tools, please subscribe to our descartes-tools mailing list {low ICAC 2017, Columbus. USA
Niceass traffic, only announcements related to our tools)
SPA
BUNGEE , | Your E-mail address: Subscribe

hinjector Your Name (optional):

SeAC @ ICAC 2017
QPME ¥ Columbus, USA

Jurgen Walter 4/27/2017

http://se.informatik.uni-wuerzburg.de/tools/pmx/

Wi Future Work

= Provide more builder implementations
= Conduct more case studies

= Allow for different monitoring tools and formats using
OPEN.xtrace (formerly Common Trace API (CTA)) as
iInput

= Use extracted models ...
= to integrate in load testing e.g., using a Jenkins plugin
= for runtime resource management

Jurgen Walter 4/27/2017

17

Wi Conclusion

= We present a framework for the extraction of

architectural performance models generalizing over the
target modeling language.

= Using the presented approach, the user only has to
Implement our builder interface to create a performance
model generation tool for a specific modeling language.

.......

Jirgen Walter 4/27/2017 18

Julius-Maximilians-

UNIVERSITAT

WURZBURG

Thank You!

Jurgen Walter*, Christian Stier**, Heiko Koziolek***, and
Samuel Kounev*

* University of Wirzburg
** FZ| Karlsruhe

*** ABB Corporate Research E

April 27, 2017
QUDOS 2017 L’'Aquila, Italy

	An Expandable Extraction Framework for Architectural�Performance Models
	Motivation
	Motivation
	Motivation
	Problem Statement
	Idea
	Two step model learning
	Approach
	Learning of generic aspects
	Approach
	Builder Interface
	Builder Interface II
	Evaluation Setting
	Evaluation Results
	Related Work
	Available online
	Future Work
	Conclusion
	Thank You!

