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Figures from: http://martinfowler.com/articles/microservices.html and https://www.slideshare.net/CiscoDevNet/enabing-devops-in-an-sdn-world



Observability is essential




Monitoring lagging behind
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Since then... proliferation of tools
and solutions

144 practitioners
surveyed

Goog|eﬁ|oud Monitoring s\, g €Crunch,
’nngrn
NewRelic

Coyr: \nfnDBL h RObbifM
OCf’GYO S(enjsu Splunk -

CloudW.

Natc
pQC/?eK Pp

M. Miglierina. Monitoring Modern Distributed Software Applications: Challenges And Solutions. PhD thesis, Politecnico di Milano, 2017.



Main perceived drawback in
monitoring?

1. Lack of standards
60% 2. Too many tools
3. Lack of usability
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M. Miglierina. Monitoring Modern Distributed Software Applications: Challenges And Soloutions. PhD thesis, Politecnico di Milano, 2017.




Omnia

* Main objectives
* reduce learning curve and entry cost to monitoring
* an attempt of standardization
°* How?
* One, interoperable, self-service monitoring interface for devs
* A simple monitoring factory for ops
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Reference team organization

* Product teams

* each responsible of its microservice
* independent workflows

* Platform team

* provide infrastructure support

 cross functional wrt product teams
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Team organzation at Netflix: https://www.nginx.com/blog/adopting-microservices- at-netflix-lessons-for-team-and-process-design/




The Omnia components
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Classical Approach (1)
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Classical Approach (2)
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Classical Approach (3)
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Classical Approach (4)

The Platform Team
decides to migrate
to monitoring stack

Y
Agents Y \
Service Alfa \
. TDB X Lib
' : J28
{b Platform
Monitoring |&— .. a2l
Tool Y
learn, configure, deploy
Product Team
Alfa ( 13 J

— automated action —C}—» — manual action —{*_’j—»




Classical Approach (5)
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Classical Approach (6)
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Omnia-based approach (1)

By using Omnia a single
learning step is required
for all teams
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Omnia-based approach (2)
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Omnia-based approach (3)
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Omnia-based approach (4)

omnia.admin.yml
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Omnia-based approach (5)
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Omnia-based approach (6)
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Omnia Libs

* Requirements:
* independent of the monitoring stack
* minimize instrumentation overhead

* Example:
Omnia Lib for Spring Boot

@Service

public class MyService {
private final CounterService counter;

@Autowired

public MyService (CounterService counter) {
this.counter = counter;

}

public void pay() {
// perform the payment

// monitoring
this.counter.increment (”payments”);




Under the hood

* Convention over configuration:
* statsd (w/ influxdb tag ext.) protocol
* automated meta-data decoration
* default endpoint

* Example:

I this.counter.increment (”payments”) ; :

Spring Boot™____
#

\ 4

payments 34

POST “payments,host=vm1,service=payservice 34” http://collector:8125

\ 4




Omnia.yml: monitoring config as
code

* Requirements

* independent of the monitoring stack
* versionable with the code

* Example:
dashboard: dashboard.tmpl
timeseries:
— metric: payments
compute: rate

— metric: heap-memory_usage
compute: average by host

— metric: cpu_usage_user »
compute: average by host

— metric: mem._used l

Go Template
Library

compute: average by host
actions:
email :
— condition: cpu_usage_user > 0.8 dashboard

(2]




The Omnia vocabulary

* Shared vocabulary for resources

Resource Description

host a physical or virtual machine

service an application

service_id a unique identifier for an instance of
an application

container_id a unique identifier for a Linux con-
tainer

container-image | a Linux container image

* and for metrics

Host metrics Java metrics
cpu_usage_user heap_memory_usage
cpu_usage_system | thread_count
cpu-usage-idle loaded-class_count
mem._used garbage._collection time
mem_used_percent | thread_count




Monitoring infra as code

omnia.admin.yml example:

provisi{%/er:
name:Ydocker
args:
username :
images_tag:
tofls :
telegraf:
roles:
— agent
— collector
pushes_to:

Q/ — influxdb
influxdb:

roles:

— tdb
Jgrafana:

pulls_fr

— inf]
roles:

— das

— act
teams_repos.

— "github.com/mmiglier /service

mmiglier
latest

Reusing existing
adapters

provisi(%er:
name:Ydocker

togls :
Q%ollectd :

args:
username .
images_tag  Reusing existing

monitoring tools

roles:
— collectvor
— agent
pushes_to:
— collectd_-exporter

Q%ollectd_exporter :

roles:
A

— agent
rometheus:
pulls_fron—

— collec
roles:

— tdb

</ — action
grafana:

pulls_from:
— prometheus

roles:
— dashboard

Reusing existing
provisioning tools

[ 2]

— "github.com/mmiglier /service



Conclusion

* Contributions
* Reduce entry cost and learning curve to monitoring
* Application of DevOps practices to monitoring
* Attempt of standardization
* Threats to validity
* A common interface may simplify tools characteristics

* However:
initial approach to monitoring has simple requirements
it could push tool vendors to implement missing features
the approach could be applied to existing or new tools

* Future work

* Extensive evaluation using real world examples




