Towards Omnia: a Monitoring
Factory for Quality-Aware DevOps

Apr 27th, 2017

Marco MIGLIERINA
Damian A. TAMBURRI

Dev- to Ops: We are moving faster

and faster |
ool lles &
Y
al 12 e 4

Development Operations

|
n

Development Operations (2 J

Figures from: http://martinfowler.com/articles/microservices.html and https://www.slideshare.net/CiscoDevNet/enabing-devops-in-an-sdn-world

Observability is essential

Monitoring lagging behind

portertech ..back in 2011

Nagios sucks! We all put up w/ it. Good
thing we have CM to make it bearable. —

devops #chet #puppet
development, operations and everything in between
Blog | Archives | Projects | Noah
COMMENTS
Why Monitoring Sucks
000 < [im] (V] a github.com/monitoringsucks] a +
about it)
O Features Business Explore Pricing This organization Sign in or Sign up
someone made a tweet. At this point, I don’t remember who said it
The Monitoring Sucks Team
Worldwide
[J Repositories People 24
Type: All ~ Language: All v
Top languages
tool-repos
Tracking various tools that fit in the monitoring and metrics space JavaScript

%1016 %122 Updated on Mar 4

People 24>

loadtesting-repos ﬂ 3 m
w(
Tracking load testing and profiling tools because stacks should not fall. . =
T — SR —

Since then... proliferation of tools
and solutions

144 practitioners
surveyed

Goog|eﬁ|oud Monitoring s\, g €Crunch,
’nngrn
NewRelic

Coyr: \nfnDBL h RObbifM
OCf’GYO S(enjsu Splunk -

CloudW.

Natc
pQC/?eK Pp

M. Miglierina. Monitoring Modern Distributed Software Applications: Challenges And Solutions. PhD thesis, Politecnico di Milano, 2017.

Main perceived drawback in
monitoring?

1. Lack of standards
60% 2. Too many tools
3. Lack of usability

45%

30%

15%

0%

M. Miglierina. Monitoring Modern Distributed Software Applications: Challenges And Soloutions. PhD thesis, Politecnico di Milano, 2017.

Omnia

* Main objectives
* reduce learning curve and entry cost to monitoring
* an attempt of standardization
°* How?
* One, interoperable, self-service monitoring interface for devs
* A simple monitoring factory for ops

Monitoring Q
s) [l o o

v

A

use manage

Reference team organization

* Product teams

* each responsible of its microservice
* independent workflows

* Platform team

* provide infrastructure support

 cross functional wrt product teams

\ \/ W/ \

|

|

Product Team |
|

Product Team Platform Team }*t

Product Team

Prod DB |

Sys Net SAN
Mgr UX Dev QA

Admin ! Admin | | Admin | | Admin { 8 J

Team organzation at Netflix: https://www.nginx.com/blog/adopting-microservices- at-netflix-lessons-for-team-and-process-design/

The Omnia components

I I I |
I Monitoring I I Monitoring I
| Interface | | factory |
I I I I
@‘ Product Team > : : : :
I I I |
I I I I
Product Team > I I I : }‘t
| | |
: M : Mosrlito[(ing : : Platform Team
@‘ Product Team > | | ac | . . |
| | | omnia.admin.yml |
I I I |
I Omnia I I I
PI’OdUCt Team | Vocabulary | | |
| | [|

Classical Approach (1)

The Platform Team
decides to use the
monitoring stack X

Agents X \
v

TDB X
Service Alfa I
{g Dashboard

A2}

Platform
Team
maintains 2
}*t learn, configure, deploy
Alerting X
Product Team
Alfa (10 J

— automated action —C}—» — manual action —{b—»

Classical Approach (2)

Product Teams have to

Agents X learn how to use X and
instrument their code

TDB X
Service Alfa
v0.1 I
Platform
Dashboard Team
learn, code, release {t") /v X
| learn, configure I
‘ learn, configure{b—> Alerting X
Product Team
Alfa

— automated action —C}—» — manual action —{b—»

Classical Approach (3)

Agents X
pushData

Service Alfa
v0.1

AR

Product Team
Alfa

TDB X Lib

O

O/v

TDB X

pushData

|

Dashboard
X

o

view

|

Alerting X

sendAlerts —

BR

Platform
Team

Monitoring stack X
is now up and
running

— automated action —C}—» — manual action —{b—»

2]

Classical Approach (4)

The Platform Team
decides to migrate
to monitoring stack

Y
Agents Y \
Service Alfa \
. TDB X Lib
' : J28
{b Platform
Monitoring |&— .. a2l
Tool Y
learn, configure, deploy
Product Team
Alfa (13 J

— automated action —C}—» — manual action —{*_’j—»

Classical Approach (5)

Agents Y Product Teams have to
learn how to use Y and re-

instrument their code

Service Alfa

v0.2 }‘t
Platform
{b Monitoring jean

learn, code, release Tool Y
| e

learn, configure

AL
Product Team
Alfa

— automated action —C}—» — manual action —{b—»

Classical Approach (6)

pushData
O

Service Alfa pullData
v0.2 \ }‘t
Platform
Monitoring L
Tool Y

&
view /
Monitoring stack Y
A2 is now up and

Product Team <\o sendAlerts running
Alfa (= J

— automated action —C}—» — manual action —{b—»

Omnia-based approach (1)

By using Omnia a single
learning step is required
for all teams

omnia.admin.yml
v

omnia.yml

learn, code

Service Alfa

2R

Platform
Team

learn, code, release

A28

Product Team
Alfa (16 J

— automated action —C}—» — manual action —{*_’j—»

Omnia-based approach (2)

parse . :
— |) omnia.admin.yml
Omnia CLI { parsew

omnia.yml

Platform
Team

Omnia deploys and
A\

T configures the PP 2nalRNIRNY
oo monitoring stack X from Alerting X configure, deploy
roauc
Al code [17 }

— automated action —C}—» — manual action —{b—»

Omnia-based approach (3)

) omnia.admin.yml
Omnia CLI vi
Agents X ||

-

pushData
omnia.yml O\
TDB X
Service Alfa O/V
pushData n
- 111
Dashboard
X Platform
{b/ A Team
view
v . .
228 Monitoring stack X
sendAlerts . Alerting X ;
Product Team IS NOW u.p and
Alfa running (18 }

— automated action —C}—» — manual action —{b—»

Omnia-based approach (4)

omnia.admin.yml

Omnia CLI V2

Agents X “

‘ —_— ‘ code
Migration to a new

monitoring stack is a
simple code change made
by the Platform Team

omnia.yml

Service Alfa

2R

Platform

| |
1 Team

A4

}‘t Alerting X

Product Team
Alfa (19 }

— automated action —C}—» — manual action —{b—»

Omnia-based approach (5)

parse C}
I Omnia CLI 1 parse V2
| o
Agents Y ||

configure, deploy

omnia.yml

Service Alfa

Monitoring
Tool Y

Platform
Team

Omnia takes care of
AL reconfiguring and
Product Team redeploying the stack

— automated action —C}—» — manual action —{b—»

Omnia-based approach (6)

The Product Teams
did not have to . .
change a line Omnia CLI M

omnia.yml

Service Alfa
pullData

AN

Monitoring
foolY Platform

— Team
dow U /

228 £y et Monitoring stack Y

Product Team IS NOW u.p and
I running 21

AR

— automated action —C}—» — manual action —{b—»

Omnia Libs

* Requirements:
* independent of the monitoring stack
* minimize instrumentation overhead

* Example:
Omnia Lib for Spring Boot

@Service

public class MyService {
private final CounterService counter;

@Autowired

public MyService (CounterService counter) {
this.counter = counter;

}

public void pay() {
// perform the payment

// monitoring
this.counter.increment (”payments”);

Under the hood

* Convention over configuration:
* statsd (w/ influxdb tag ext.) protocol
* automated meta-data decoration
* default endpoint

* Example:

I this.counter.increment (”payments”) ; :

Spring Boot™____
#

\ 4

payments 34

POST “payments,host=vm1,service=payservice 34” http://collector:8125

\ 4

Omnia.yml: monitoring config as
code

* Requirements

* independent of the monitoring stack
* versionable with the code

* Example:
dashboard: dashboard.tmpl
timeseries:
— metric: payments
compute: rate

— metric: heap-memory_usage
compute: average by host

— metric: cpu_usage_user »
compute: average by host

— metric: mem._used l

Go Template
Library

compute: average by host
actions:
email :
— condition: cpu_usage_user > 0.8 dashboard

(2]

The Omnia vocabulary

* Shared vocabulary for resources

Resource Description

host a physical or virtual machine

service an application

service_id a unique identifier for an instance of
an application

container_id a unique identifier for a Linux con-
tainer

container-image | a Linux container image

* and for metrics

Host metrics Java metrics
cpu_usage_user heap_memory_usage
cpu_usage_system | thread_count
cpu-usage-idle loaded-class_count
mem._used garbage._collection time
mem_used_percent | thread_count

Monitoring infra as code

omnia.admin.yml example:

provisi{%/er:
name:Ydocker
args:
username :
images_tag:
tofls :
telegraf:
roles:
— agent
— collector
pushes_to:

Q/ — influxdb
influxdb:

roles:

— tdb
Jgrafana:

pulls_fr

— inf]
roles:

— das

— act
teams_repos.

— "github.com/mmiglier /service

mmiglier
latest

Reusing existing
adapters

provisi(%er:
name:Ydocker

togls :
Q%ollectd :

args:
username .
images_tag Reusing existing

monitoring tools

roles:
— collectvor
— agent
pushes_to:
— collectd_-exporter

Q%ollectd_exporter :

roles:
A

— agent
rometheus:
pulls_fron—

— collec
roles:

— tdb

</ — action
grafana:

pulls_from:
— prometheus

roles:
— dashboard

Reusing existing
provisioning tools

[2]

— "github.com/mmiglier /service

Conclusion

* Contributions
* Reduce entry cost and learning curve to monitoring
* Application of DevOps practices to monitoring
* Attempt of standardization
* Threats to validity
* A common interface may simplify tools characteristics

* However:
initial approach to monitoring has simple requirements
it could push tool vendors to implement missing features
the approach could be applied to existing or new tools

* Future work

* Extensive evaluation using real world examples

